Will ocean acidification affect the digestive physiology and gut microbiota of whelk Brunneifusus ternatanus?

Author:

Cheng Fen1ORCID,Vasquez Hebert Ely23,Yang Shouguo1,Wu Xiangyu1,Xing Yixuan1,Tang Xianming1

Affiliation:

1. Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China

2. Hainan University, 58 Renmin Avenue, Haikou, Hainan 570228, PR China

3. 3 State Key Laboratory of Marine Resource Utilization in South China Sea (Hainan University), 58 Renmin Avenue, Haikou, Hainan 570228, PR China

Abstract

To understand the physiological responses of the Brunneifusus ternatanus to future ocean acidification (OA), histology, enzyme activity and gut bacterial composition at different pH levels (Control : C group, pH 8.1; Exposure period : EP group, pH 7.3) for 28 days were studied under laboratory conditions. Microbiota composition was analyzed using 16S rRNA gene amplicon sequencing. Enzyme activities of trypsin (TRY), lipase (LPS), amylase (AMS), and lysozyme (LZM) were used as biochemical indicators, as well as weight gain rate (WGR), specific growth rate (SGR) as growth indicators. The stress caused by OA resulted in alterations to the intestine, including partially swollen and degranulated enterocytes and rough endoplasmic reticulum (RER). The relative abundance of the core phylum in the acidified group changed significantly, showing an increase in Tenericutes and a decrease in Proteobacteria. Firmicutes/Bacteroides ratio declined from 4.38 in the control group to 1.25 in the EP group. We found that the enzymes TRY, LPS, and AMS activities were inhibited at reduced pH, which was positively correlated with the dominant genera Mycoplasma and Bacteroides; while LZM activities showed a significant increment, but showing a strong negative correlation. Furthermore, both WG and SRG values showed a depression at low pH lever. These results suggest that if anthropogenic CO2 emissions continue to accelerate, OA could lead to a negative impact on the whelk health, also compromising their growth performance and even survival. These findings will benefit the future risk assessments of OA or other related emerging environmental issue.

Publisher

AquacultureHub

Subject

Agronomy and Crop Science,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3