3D convolutional neural networks for detecting intracranial aneurysms on brachiocephalic arteries CTA scans

Author:

Zyablova E. I.1ORCID,Sinitsa S. G.2ORCID,Zayats I. A.2ORCID,Khalafyan A. A.2ORCID,Kardailskaya D. O.1ORCID,Porhanov V. A.1ORCID

Affiliation:

1. Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1; Kuban State Medical University

2. Kuban State University

Abstract

Background: Computed tomography angiography (CTA) is the primary and minimally invasive imaging modality currently used for diagnosis and monitoring of intracranial aneurysms as well as preoperative planning of their treatment. However, its interpretation is time-consuming even for specially trained neuroradiologists. Nowadays little is known whether trained neural networks contribute to analyzing medical images and reduce the time to diagnosis, and how effective they are in detecting intracranial aneurysms according to the CTA findings.Objective: To assess the diagnostic value of a convolutional neural network prototype in the intracranial aneurysm detection according to the brachiocephalic arteries CTA findings.Materials and methods: We analyzed the 3D convolutional neural network prototype based at Kuban State University (Krasnodar, Russian Federation).This prototype was to determine the probability of intracranial aneurysms according to the brachiocephalic arteries CTA findings, obtained in the Radiology Department of Scientific Research Institute – Ochapovsky Regional Clinical Hospital No. 1. The study included 451 CTA scans of 205 patients with confirmed intracranial aneurysms and 246 patients without aneurysms.Results: The sensitivity of the 3D convolutional neural network prototype in the aneurysms detection according to the brachiocephalic arteries CTA findings was 85.1%, the specificity was 95.1%, and the overall accuracy was 91%.Conclusions: The 3D convolutional systems may predict aneurysms with a high accuracy as well as localize them with an accuracy of more than 90%. Such results require a larger dataset.

Publisher

Scientific Research Institute - Ochapovsky Regional Clinical Hospital No 1

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3