Evaluating the Effectiveness of the Experimental Use of the Collagen Conduit Filled With Dermal hydrogel to Repair a Peripheral Nerve Defect

Author:

Melkonian K. I.1ORCID,Rusinova T. V.1ORCID,Asyakina A. S.1ORCID,Fomenco A. A.1ORCID,Solop E. A.1ORCID,Chuprynin G. P.1ORCID,Vinogradov R. A.1ORCID,Antonova O. Y.2ORCID

Affiliation:

1. Kuban State Medical University

2. Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Abstract

Background: Current studies show that hollow conduits in combination with various synthetic and biological fillers significantly accelerate functional recovery of peripheral nerves. One of such fillers can be a hydrogel based on the extracellular matrix of the dermis, which contains surface ligands capable of providing topographic and biological signals for nerve regeneration.Objective: To evaluate the effectiveness of rat sciatic nerve regeneration using a collagen conduit filled with dermal hydrogel in an in vivo experiment.Materials and methods: We evaluated the effectiveness of the NeuraGen® collagen conduit filled with dermal hydrogel and compared it with that of an autograft and the NeuraGen® hollow collagen conduit in experimental treatment of rat sciatic nerve defects larger than 1 cm. Male Wistar rats underwent sciatic nerve resection. We calculated the Sciatic Functional Index (SFI) and ratio of the calf circumference in an operated limb to that in an intact limb on days 30, 60, and 90 after implantation. We performed electrophysiological tests and explanted samples for hematoxylin-eosin staining on day 90 of the experiment.Results: When assessing the SFI and electrophysiological parameters, the group of animals with autografts and the group with the NeuraGen® collagen conduits filled with dermal hydrogel demonstrated similar results. We observed muscle atrophy, low SFI scores, and low velocity and short duration of the action potential in the group with the hollow NeuraGen® collagen conduits. Histological analysis of explanted samples of the collagen conduits filled with dermal hydrogel demonstrated areas of glial proliferation and the absence of pronounced degeneration of nerve fibers throughout the implant compared with autografts, indicating functional regeneration of nerve fibers.Conclusions: Evaluation of the effectiveness of rat sciatic nerve regeneration showed that the NeuraGen® collagen conduit filled with dermal hydrogel provides functional and morphological integration with the nerve compared with an autograft. Our findings can be used for further development and improvement of nerve conduits.

Publisher

Scientific Research Institute - Ochapovsky Regional Clinical Hospital No 1

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3