Real-Time Object Detection Overview: Advancements, Challenges, and Applications

Author:

Naif Alsharabi

Abstract

Real-time object detection is a crucial aspect of computer vision with applications spanning autonomous vehicles, surveillance, robotics, and augmented reality. This study examines real-time object detection techniques, highlighting their significance in artificial intelligence. The primary goal is swift and accurate object identification in images or video streams. Traditional methods like sliding windows and region-based approaches had limitations in computational efficiency. Deep learning, particularly Convolutional Neural Networks (CNNs), revolutionized object detection. Models like SSD, YOLO, and Faster R-CNN excel in accuracy and speed. They employ anchor boxes, feature pyramid networks, and non-maximum suppression to balance precision and processing speed. Hardware accelerators like GPUs, TPUs, and FPGAs facilitate real-time inference. Challenges in real-time object detection include occlusion, scale variations, and cluttered environments. Researchers must navigate the trade-offs between accuracy and speed. Real-time object detection is pivotal in computer vision, enabling intelligent systems across diverse applications. The continuous evolution of deep learning algorithms and hardware capabilities pushes the boundaries of this field, making it a dynamic research domain in artificial intelligence.

Publisher

Amran University

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of Real-Time Detection of Philippine Traffic Signs Using YOLOv4-Tiny;2024 IEEE 6th Symposium on Computers & Informatics (ISCI);2024-08-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3