Author:
Moyano-Fernández J. J.,Zúňiga-Galindo W. A.
Abstract
AbstractLet X be a complete, geometrically irreducible, singular, algebraic curve defined over a field of characteristic p big enough. Given a local ring Op,x at a rational singular point P of X, we attached a universal zeta function which is a rational function and admits a functional equation if Op,x is Gorenstein. This universal zeta function specializes to other known zeta functions and Poincaré series attached to singular points of algebraic curves. In particular, for the local ring attached to a complex analytic function in two variables, our universal zeta function specializes to the generalized Poincaré series introduced by Campillo, Delgado, and Gusein-Zade.
Publisher
Cambridge University Press (CUP)
Reference31 articles.
1. Gorenstein property and symmetry for one-dimensional local Cohen-Macaulay rings
2. Caracteristiques de Euler-Poincaré, fonctions zeta locales et modifications analytiques;Denef;J. Amer. Math. Soc.,1992
3. La fonction zêta d'une monodromie
4. Zeta functions of singular curves over finite fields;Zuún˜iga-Galindo;Rev. Colombiana Mat.,1997
5. On the poles of regular differentials of singular curves
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献