Author:
Yang Dachun,Yang Dongyong,Zhou Yuan
Abstract
AbstractLet be a space of homogeneous type in the sense of Coifman and Weiss, and let be a collection of balls in . The authors introduce the localized atomic Hardy space the localized Morrey-Campanato space and the localized Morrey-Campanato-BLO (bounded lower oscillation) space with α ∊ ℝ and p ∊ (0, ∞) , and they establish their basic properties, including and several equivalent characterizations for In particular, the authors prove that when α > 0 and p ∊ [1, ∞), then and when p ∈(0,1], then the dual space of is Let ρ be an admissible function modeled on the known auxiliary function determined by the Schrödinger operator. Denote the spaces and , respectively, by and when is determined by ρ. The authors then obtain the boundedness from of the radial and the Poisson semigroup maximal functions and the Littlewood-Paley g-function, which are defined via kernels modeled on the semigroup generated by the Schrödinger operator. These results apply in a wide range of settings, for instance, the Schrödinger operator or the degenerate Schrödinger operator on ℝd, or the sub-Laplace Schrödinger operator on Heisenberg groups or connected and simply connected nilpotent Lie groups.
Publisher
Cambridge University Press (CUP)
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献