Abstract
AbstractWe prove a variant of a formula due to Zhang relating the Beilinson– Bloch height of the Gross–Schoen cycle on a pointed curve with the self-intersection of its relative dualizing sheaf. In our approach, the height of the Gross–Schoen cycle occurs as the degree of a suitable Bloch line bundle. We show that the Chern form of this line bundle is nonnegative, and we calculate its class in the Picard group of the moduli space of pointed stable curves of compact type. The basic tools are normal functions and biextensions associated to the cohomology of the universal Jacobian.
Publisher
Cambridge University Press (CUP)
Reference30 articles.
1. Meyer O. , Über Biextensionen und Höhenpaarungen algebraischer Zykel, Ph.D. dissertation, University of Regensburg, Regensburg, Germany, 2003.
2. Moret-Bailly L. , La formule de Noether pour les surfaces arithmétiques, Invent. Math. 98 1989, 491–498. MR 1022303. DOI 10.1007/BF01393833.
3. Bost J.-B. , Gillet H. , and Soulé C. , Heights of projective varieties and positive Green forms, J. Amer. Math. Soc. 7 1994, 903–1027. MR 1260106. DOI 10.2307/2152736.
4. Bloch S. , “Cycles and biextensions” in Algebraic K-theory and Algebraic Number The ory (Honolulu, 1987), Contemp. Math. 83, Amer. Math. Soc, Providence, 1989, 19–30. MR 0991974. DOI 10.1090/conm/083/991974.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献