Martingales arising from minimal submanifolds and other geometric contexts
-
Published:2014-01-01
Issue:2
Volume:58
Page:
-
ISSN:0019-2082
-
Container-title:Illinois Journal of Mathematics
-
language:
-
Short-container-title:Illinois J. Math.
Publisher
Duke University Press
Subject
General Mathematics
Reference21 articles.
1. A. Agrachev, U. Boscain, J. P. Gauthier and F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, J. Funct. Anal. 256 (2009), no. 8, 2621–2655.
2. M. Arnaudon, Differentiable and analytic families of continuous martingales in manifolds with connection, Probab. Theory Related Fields 108 (1997), no. 2, 219–257.
3. G. P. Bessa and J. F. Montenegro, Eigenvalue estimates for submanifolds with locally bounded mean curvature, Ann. Global Anal. Geom. 24 (2003), no. 3, 279–290.
4. R. W. R. Darling, Convergence of martingales on a Riemannian manifold, Publ. Res. Inst. Math. Sci. 19 (1983), no. 2, 753–763.
5. R. W. R. Darling, Exit probability estimates for martingales in geodesic balls, using curvature, Probab. Theory Related Fields 93 (1992), no. 2, 137–152.