Author:
Chaves Rosa M. B.,Santos Eliane
Reference24 articles.
1. [1] U. Abresch and H. Rosenberg, A Hopf differential for constant mean curvature surfaces in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^{2}\times \mathbb{R}$, Acta Math. 193 (2004), no. 2, 141–174.
2. [2] J. A. Aledo, J. M. Espinar, and J. A. Gálvez, Complete surfaces of constant curvature in $H^{2}\times \mathbb{R}$ and $S^{2}\times \mathbb{R}$, Calc. Var. Partial Differ. Equ. 29, (2007), no. 3, 347–363.
3. [3] J. A. Aledo, J. M. Espinar, and J. A. Gálvez, Surfaces with constant curvature in $S^{2}\times\mathbb{R}$ and $H^{2}\times \mathbb{R}$. Height estimates and representation, Bull. Braz. Math. Soc. (N.S.) 38 (2007), no. 4, 533–554.
4. [4] J. Berndt and J. C. Diaz-Ramos, Real hypersurfaces with constant principal curvatures in complex hyperbolic spaces, J. Lond. Math. Soc., II. Ser. 74 (2006), no. 3, 778–798.
5. [5] E. Cartan, “Sur quelques familles remarquables d’hypersurfaces” in Comptes rendus du congrès des sciences mathématiques de Liège, Georges Thone, Liége, 1939, 30–41.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Geometric flows by parallel hypersurfaces;Illinois Journal of Mathematics;2024-06-01