1. [4] Caicedo, A. E., P. B. Larson, G. Sargsyan, R. D. Schindler, J. R. Steel, and M. Zeman, “Square principles in $\mathbb{P}_{\mathrm{max}}$ extensions,” to appear in Israel Journal of Mathematics, preprint, arXiv:1205.4275v2 [math.LO].
2. [25] Magidor, M., and C. Lambie-Hanson, “On the strengths and weaknesses of weak squares,” Appalachian Set Theory workshop, Carnegie Mellon University, Pittsburgh, Penn., 2011, http://www.math.cmu.edu/~eschimme/Appalachian/Magidor.html.
3. [7] Cummings, J., M. Foreman, and M. Magidor, “Squares, scales and stationary reflection,” Journal of Mathematical Logic, vol. 1 (2001), pp. 35–98.
4. [1] Baumgartner, J. E., “A new class of order types,” Annals of Mathematical Logic, vol. 9 (1976), pp. 187–222.
5. [2] Ben-David, S., and M. Magidor, “The weak $\square^{*}$ is really weaker than the full $\square$,” Journal of Symbolic Logic, vol. 51 (1986), pp. 1029–33.