Depends Who's Asking: Interviewer Effects in Demographic and Health Surveys Abortion Data

Author:

Leone Tiziana1,Sochas Laura2,Coast Ernestina1

Affiliation:

1. Department of International Development, LSE, London, UK

2. Department of Social Policy, LSE, London, UK

Abstract

Abstract Responses to survey questions about abortion are affected by a wide range of factors, including stigma, fear, and cultural norms. However, we know little about how interviewers might affect responses to survey questions on abortion. The aim of this study is to assess how interviewers affect the probability of women reporting abortions in nationally representative household surveys: Demographic and Health Surveys (DHS). We use cross-classified random intercepts at the level of the interviewer and the sampling cluster in a Bayesian framework to analyze the impact of interviewers on the probability of reporting abortions in 22 DHS conducted worldwide. Household surveys are the only available data we can use to study the determinants and pathways of abortion in detail and in a representative manner. Our analyses are motivated by improving our understanding of the reliability of these data. Results show an interviewer effect accounting for between 0.2% and 50% of the variance in the odds of a woman reporting ever having had an abortion, after women's demographic characteristics are controlled for. In contrast, sampling cluster effects are much lower in magnitude. Our findings suggest the need for additional effort in assessing the causes of abortion underreporting in household surveys, including interviewers' skills and characteristics. This study also has important implications for improving the collection of other sensitive demographic data (e.g., gender-based violence and sexual health). Data quality of responses to sensitive questions could be improved with more attention to interviewers—their recruitment, training, and characteristics. Future analyses will need to account for the role of interviewer to more fully understand possible data biases.

Publisher

Duke University Press

Subject

Demography

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3