Decomposition of Differentials in Health Expectancies From Multistate Life Tables: A Research Note

Author:

Shen Tianyu1ORCID,Riffe Tim234ORCID,Payne Collin F.15ORCID,Canudas-Romo Vladimir1ORCID

Affiliation:

1. School of Demography, Australian National University, Canberra, Australia

2. University of the Basque Country (UPV/EHU), Bilbao, Spain

3. Ikerbasque (Basque Foundation for Science), Leioa, Spain

4. Max Planck Institute for Demographic Research, Rostock, Germany

5. Harvard Center for Population and Development Studies, Harvard T. H. Chan School of Public Health, Cambridge, MA, USA

Abstract

Abstract Multistate modeling is a commonly used method to compute healthy life expectancy. However, there is currently no analytical method to decompose the components of differentials in summary measures calculated from multistate models. In this research note, we propose a derivative-based method to decompose the differentials in population-based health expectancies estimated via a multistate model into two main components: the proportion resulting from differences in initial health structure and the proportion resulting from differences in health transitions. We illustrate the method using data on activities of daily living from the U.S. Health and Retirement Study to decompose the sex differential in disability-free life expectancy (HLE) among older Americans. Our results suggest that the sex gap in HLE results primarily from differences in transition rates between disability states rather than from the initial health distribution of female and male populations. The methods introduced here will enable researchers, including those working in fields other than health, to decompose the relative contribution of initial population structure and transition probabilities to differences in state-specific life expectancies from multistate models.

Publisher

Duke University Press

Subject

Demography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3