1. [15] B. Gidas, W. M. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243.
2. [1] H. Berestycki, L. Caffarelli, and L. Nirenberg, Symmetry for elliptic equations in a half space, Boundary value problems for partial differential equations and applications ed. C. Baiocchi, RMA Res. Notes Appl. Math., vol. 29, Masson, Paris, 1993, pp. 27–42.
3. [2] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), no. 1, 1–37.
4. [3] H. Berestycki, L. Nirenberg, and S. R. S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), no. 1, 47–92.
5. [4] H. Brezis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e\sp u$ in two dimensions, Comm. Partial Differential Equations 16 (1991), no. 8-9, 1223–1253.