1. [1] D. Brydges and T. Spencer, Self-avoiding walk in $5$ or more dimensions, Comm. Math. Phys. 97 (1985), no. 1-2, 125–148.
2. [2] A. Dvoretzky, P. Erdös, and S. Kakutani, Double points of paths of Brownian motion in $n$-space, Acta Sci. Math. Szeged 12 (1950), no. Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars B, 75–81.
3. [3] G. Lawler, A self-avoiding random walk, Duke Math. J. 47 (1980), no. 3, 655–693.
4. [4] G. Lawler, A connective constant for loop-erased self-avoiding random walk, J. Appl. Probab. 20 (1983), no. 2, 264–276.
5. [5] G. Lawler, The probability of intersection of independent random walks in four dimensions, Comm. Math. Phys. 86 (1982), no. 4, 539–554.