1. [RS] J. Rosenberg and C. Schochet, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $K$-functor, Duke Math. J. 55 (1987), no. 2, 431–474.
2. [Bl] B. Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986.
3. [B] W. Browder, Algebraic $K$-theory with coefficients $\~Z/p$, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), I, Lecture Notes in Math., vol. 657, Springer, Berlin, 1978, pp. 40–84.
4. [Br1] L. G. Brown, Extensions and the structure of $C\sp\ast$-algebras, Symposia Mathematica, Vol. XX (Convegno sulle Algebre $C\sp\ast$ e loro Applicazioni in Fisica Teorica, Convegno sulla Teoria degli Operatori Indice e Teoria $K$, INDAM, Rome, 1975), Academic Press, London, 1976, pp. 539–566.
5. [Br2] L. G. Brown, The universal coefficient theorem for ${\rm Ext}$ and quasidiagonality, Operator algebras and group representations, Vol. I (Neptun, 1980), Monogr. Stud. Math., vol. 17, Pitman, Boston, MA, 1984, pp. 60–64.