1. [2] A. Borel, Introduction aux groupes arithmétiques, Publications de l'Institut de Mathématique de l'Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969.
2. [1] A. Borel, Cohomology of arithmetic groups, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), Vol. 1, Canad. Math. Congress, Montreal, Que., 1975, pp. 435–442.
3. [3] F. Grunewald, H. Helling, and J. Mennicke, $\rm SL\sb2$ over complex quadratic number fields. I, Algebra i Logika 17 (1978), no. 5, 512–580, 622.
4. [4] G. Harder, On the cohomology of $SL(2,O)$, Lie groups and their representations (Proc. Summer School on Group Representations of the Bolyai János Math. Soc., Budapest, 1971), Halsted, New York, 1975, pp. 139–150.
5. [5] H. Hasse, Vorlesungen über Zahlentheorie, Zweite neubearbeitete Auflage. Die Grundlehren der Mathematischen Wissen schaften, Band 59, Springer-Verlag, Berlin, 1964.