Author:
Bakalov B.,Horozov E.,Yakimov M.
Reference38 articles.
1. [1] M. Adler and J. Moser, On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys. 61 (1978), no. 1, 1–30.
2. [2] M. Adler, T. Shiota, and P. van Moerbeke, A Lax representation for the vertex operator and the central extension, Comm. Math. Phys. 171 (1995), no. 3, 547–588.
3. [3] H. Airault, H. P. McKean, and J. Moser, Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem, Comm. Pure Appl. Math. 30 (1977), no. 1, 95–148.
4. [4] B. N. Bakalov, L. S. Georgiev, and I. T. Todorov, A QFT approach to $W_1+\infty$, New Trends in Quantum Field Theory, Proceedings of the 1995 Razlog (Bulgaria) Workshop ed. A. Ganchev, et al., Heron Press, Sofia, 1996, pp. 147–158.
5. [5] B. Bakalov, E. Horozov, and M. Yakimov, Tau-functions as highest weight vectors for $W\sb 1+\infty$ algebra, J. Phys. A 29 (1996), no. 17, 5565–5573.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献