1. [1] A. Intissar, A polynomial bound on the number of the scattering poles for a potential in even-dimensional spaces $\bf R\sp n$, Comm. Partial Differential Equations 11 (1986), no. 4, 367–396.
2. [2] A. Intissar, On the value distribution of the scattering poles associated to the Schrödinger operator $H=(--i\nabla+b(x))^2+a(x)$ in $\mathbf R^n, n\geqslant3$, preprint.
3. [3] P. D. Lax and R. S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York, 1967.
4. [4] B. Ja. Levin, Distribution of Zeros of Entire Functions, Trans. Math. Monographs, vol. 5, Amer. Math. Soc., Providence, R.I., 1964.
5. [5] R. Melrose, Polynomial bound on the number of scattering poles, J. Funct. Anal. 53 (1983), no. 3, 287–303.