Every central simple algebra is Brauer equivalent to a Hopf Schur algebra
-
Published:2012-01-01
Issue:2
Volume:56
Page:
-
ISSN:0019-2082
-
Container-title:Illinois Journal of Mathematics
-
language:
-
Short-container-title:Illinois J. Math.
Publisher
Duke University Press
Subject
General Mathematics
Reference16 articles.
1. E. Aljadeff, J. Cuadra, S. Gelaki and E. Meir, On the Hopf Schur group of a field, J. Algebra 319(12) (2008), 5165–5177; available at \arxivurlarXiv:0708.1943v1.
2. E. Aljadeff and J. Sonn, On the projective Schur group of a field, J. Algebra 178(2) (1995), 530–540.
3. N. Andruskiewitsch and H. J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of order $p^3$, J. Algebra 209(2) (1998), 658–691.
4. M. Beattie, S. Dascalescu and L. Grunenfelder, On the number of types of finite dimensional Hopf algebras, Invent. Math. 136 (1999), 1–7.
5. S. Caenepeel, S. Dascalescu, and L. Lebruyn, Forms of pointed Hopf algebras, Manuscripta Math. 100 (1999), 35–53.