1. [BS] S. Böcherer and F. Satō, Rationality of certain formal power series related to local densities, Comment. Math. Univ. St. Pauli 36 (1987), 53–86.
2. [G] V. A. Gritsenko, The Maass space for $\operatorname{SU} (2,2)$. The Hecke ring, and zeta functions (in Russian), Trudy Mat. Inst. Steklov. 183 (1990), 68–78, 223–225; English translation in Proc. Steklov Inst. Math. 1991, 75–86.
3. [IK1] T. Ibukiyama and H. Katsurada, An explicit formula for Koecher-Maaß Dirichlet series for the Ikeda lifting, Abh. Math. Sem. Univ. Hamburg 74 (2004), 101–121.
4. [IK2] T. Ibukiyama and H. Katsurada, “Koecher-Maaß series for real analytic Siegel Eisenstein series” in Automorphic Forms and Zeta Functions, World Sci., Hackensack, N.J., 2006, 170–197.
5. [IS] T. Ibukiyama and H. Saito, On zeta functions associated to symmetric matrices, I: An explicit form of zeta functions, Amer. J. Math. 117 (1995), 1097–1155.