Cyclicity and Titchmarsh divisor problem for Drinfeld modules
-
Published:2017-09-01
Issue:3
Volume:57
Page:
-
ISSN:2156-2261
-
Container-title:Kyoto Journal of Mathematics
-
language:
-
Short-container-title:Kyoto J. Math.
Publisher
Duke University Press
Reference19 articles.
1. [1] A. Akbary and D. Ghioca, A geometric variant of Titchmarsh divisor problem, Int. J. Number Theory 8 (2012), 53–69.
2. [2] A. C. Cojocaru and M. R. Murty, Cyclicity of elliptic curves modulo $\wp$ and elliptic curve analogues of Linnik’s problem, Math. Ann. 330 (2004), 601–625.
3. [3] A. C. Cojocaru and A. M. Shulman, An average Chebotarev density theorem for generic rank $2$ Drinfeld modules with complex multiplication, J. Number Theory 133 (2013), 897–914.
4. [4] C. David, Frobenius distributions of Drinfeld modules of any rank, J. Number Theory 90 (2001) 329–340.
5. [5] A. T. Felix and M. R. Murty, On the asymptotics for invariants of elliptic curves modulo $p$, J. Ramanujan Math. Soc. 28 (2013), 271–298.