1. [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, reprint of the 1972 edition, Dover, New York, 1992.
2. [2] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia Math. Appl. 71, Cambridge Univ. Press, Cambridge, 1999.
3. [3] P. Bourgade, T. Fujita, and M. Yor, Euler’s formulae for $\zeta(2n)$ and products of Cauchy variables, Electron. Comm. Probab. 12 (2007), 73–80.
4. [4] F. Cordero, Sur la théorie des excursions pour des processus de Lévy symétriques stables d’indice $\alpha\in\,]1,2]$, et quelques applications, Ph.D. dissertation, École Doctorale Paris Centre, Paris, 2010.
5. [5] T. Fujita, “A probabilistic approach to special values of the Riemann zeta function” in Number Theory and Probability Theory (Kyoto 2007), Su-rikaisekikenkyu-sho Ko-kyu-roku 1590, Kyoto Univ. 2008, 1–9.