Effective removal of arsenic (V) from aqueous solutions using efficient CuO/TiO2 nanocomposite adsorbent

Author:

Farooq Saima1ORCID,Siddiqa Asima2ORCID,Ashraf Sobia3ORCID,Haider Sabtain4ORCID,Imran Saiqa5ORCID,Shahida Shabnam3ORCID,Qaisar Sara2ORCID

Affiliation:

1. Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa 616, Oman

2. Nanosciences and Technology Department, National Centre for Physics, Islamabad, 44000, Pakistan

3. Department of Chemistry, The University of Poonch Rawalakot, Azad Kashmir, Pakistan

4. Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan

5. Pakistan Council of Research in Water Resources, Ministry of Science and Technology, Islamabad, Pakistan

Abstract

The groundwater is one of the biggest natural resources for providing drinking water to millions of people all around the globe. However, the presence of large amount of arsenic(V) in water causes serious health hazards to the consumers which necessitates the development of cost-effective remediation. The CuO/TiO2 nanocomposites were prepared by the precipitation-deposition method for the removal of the arsenate ion (AsO43-) from water. The prepared samples were characterized by powder X-ray diffraction, Fourier transform infrared, and scanning electron microscopy to examine crystallite size and structure, material purity, textural features, morphology, and surface area. The effect of different operating parameters such as pH, contact time, initial concentration of arsenic(V) and nanocomposite dose on the removal rate of arsenic(V) was examined to optimize the adsorption performance of the CuO/TiO2 nanocomposite. In addition, the adsorption mechanism was studied by employing Langmuir and Freundlich adsorption isotherms to gain better understanding of the adsorption mechanism. The Freundlich adsorption isotherm fits well with the experimental data and the maximum adsorption capacity of the Langmuir model was found to be 90 mg/g for arsenic(V). The CuO/TiO2 nanocomposite shows remarkable adsorption performance for the treatment of arsenic(V) contaminated water samples. This study provides a cost-effective solution for the safe use of groundwater contaminated with arsenic.

Publisher

European Journal of Chemistry

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3