Pure component contribution (PCCA) and synergy interval partial least squares (siPLS) algorithms for efficient resolution and quantification of overlapped signals; an application to novel antiviral tablets of daclatasvir, sofosbuvir and ribavirin

Author:

El-Alamin Maha Mahmoud Abou1ORCID,Sultan Maha Abd Elrahman1ORCID,Hegazy Maha2ORCID,Wark Alastair William3ORCID,Azab Marwa Mohamed1ORCID

Affiliation:

1. Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Cairo, 11795, Egypt

2. Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt

3. Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, G1 1RD, UK

Abstract

Daclatasvir (DAC), sofosbuvir (SOF) and ribavirin (RIB) have been recently co-formulated in tablet dosage form for the treatment of Hepatitis C virus infections. In this work, the resolution and quantitation of overlapped spectral signals was achieved by both univariate and multivariate algorithms. Pure component contribution algorithm (PCCA) as a novel approach was applied along with factor based partial least squares (PLS) algorithms using both full range and synergistic intervals (siPLS). Each drug could be determined at its λmax using PCCA, while PLS and siPLS were used for multivariate determination of the three components. Good linear relationships were obtained in the ranges of 5.45-16.35, 4.40-44.00 and 5.50-35.00 µg/mL for DAC, SOF and RIB, respectively, by PCCA. The PLS and siPLS models were built for the three compounds each in the concentration range of 2.00-10.00, 10.00-20.00 and 10.00-26.00 µg/mLfor DAC, SOF and RIB, respectively. Validation of the proposed methods was ascertained according to ICH guidelines for PCCA and through the use of internal and external validation sets for PLS and SiPLS models. The three methods were successfully applied for determination of DAC, SOF and RIB in pure form and in tablets.

Publisher

European Journal of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3