Discovery of high antibacterial and antitumor effects against multi-drug resistant clinically isolated bacteria and MCF-7 and AGS cell lines by biosynthesized silver nanoparticles using Oxalis corniculata extract
-
Published:2023-06-30
Issue:2
Volume:14
Page:202-210
-
ISSN:2153-2257
-
Container-title:European Journal of Chemistry
-
language:en
-
Short-container-title:Eur J Chem
Author:
Ebrahimzadeh Mohammad Ali1ORCID, Alizadeh Seyedeh Roya1ORCID, Hashemi Zahra2ORCID
Affiliation:
1. Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran 2. Department of Medicinal Chemistry, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Abstract
The green technique is a unique way to produce functional nanoparticles. We examined the green synthesis of Ag nanoparticles (O-AgNPs) by the extract of Oxalis corniculata. Green-synthesized O-AgNPs were accomplished by monitoring critical factors such as concentration, pH, reaction time, and temperature. Several analytical techniques, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis, and UV-Vis spectroscopy, were applied to characterize O-AgNPs. The SEM analysis showed O-AgNPs with a spherical shape and an average size of 33.57 nm. The XRD pattern indicated the face-centered cubic (fcc) structure of the prepared O-AgNPs. The anticancer activity of the synthesized O-AgNPs was investigated in MCF-7 (breast) and AGS (gastric) cell lines, indicating high anticancer effects against selected cell lines. The growth of all selected bacteria containing Gram+ and Gram- was inhibited by O-AgNPs. O-AgNPs showed greater inhibition in comparison to conventional antibiotics. As a result, our green synthesized AgNPs using plant extracts exhibited anticancer and antibacterial activities.
Publisher
European Journal of Chemistry
Reference64 articles.
1. [1]. Anu, K.; Devanesan, S.; Prasanth, R.; AlSalhi, M. S.; Ajithkumar, S.; Singaravelu, G. Biogenesis of selenium nanoparticles and their anti-leukemia activity. J. King Saud Univ. Sci. 2020, 32, 2520-2526. 2. [2]. Chang, Y.-N.; Zhang, M.; Xia, L.; Zhang, J.; Xing, G. The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 2012, 5, 2850-2871. 3. [3]. Majumdar, M.; Shivalkar, S.; Pal, A.; Verma, M. L.; Sahoo, A. K.; Roy, D. N. Nanotechnology for enhanced bioactivity of bioactive compounds. In Biotechnological Production of Bioactive Compounds; Elsevier, 2020; pp. 433-466. 4. [4]. Ebrahimzadeh, M. A.; Tafazoli, A.; Akhtari, J.; Biparva, P.; Eslami, S. Engineered silver nanoparticles, A new nanoweapon against cancer. Anticancer Agents Med. Chem. 2019, 18, 1962-1969. 5. [5]. Agarwal, M.; Murugan, M. S.; Sharma, A.; Rai, R.; Kamboj, A.; Sharma, H.; Roy, S. K. Nanoparticles and its toxic effects: A review. Int. J. Curr. Microbiol. App. Sci. 2013, 2, 76-82.
|
|