Synthesis, spectral, crystallographic, and computational investigation of a novel molecular hybrid 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones

Author:

Krishnan Kannan Gokula1ORCID,Thanikachalam Venugopal2ORCID

Affiliation:

1. Department of Chemistry, Government Arts and Science College for Women, Karimangalam - 635 111, Tamil Nadu, India

2. Department of Chemistry, Annamalai University, Annamalainagar - 608 002, Tamil Nadu, India

Abstract

Synthesis of 3-(1-((benzoyloxy)imino)ethyl)-2H-chromen-2-ones (1-5) was accomplished and it was characterized experimentally using various analytical techniques. Computational studies have been carried out for all compounds 1-5 using B3LYP method with 6-311++G(d,p) basis set. The optimized structural features viz. bond lengths, bond angles, and dihedral angles are compared with their single-crystal X-ray diffraction results of compound 1 (Crystal data for C18H13NO4 (M = 307.29 g/mol): Monoclinic, space group P21/c (no. 14), a = 11.399(5) Å, b = 5.876(5) Å, c = 21.859(5) Å, β = 91.060(5)°, V = 1463.9(14) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.100 mm-1, Dcalc = 1.394 g/cm3, 13555 reflections measured (3.58° ≤ 2Θ ≤ 56.98°), 3669 unique (Rint = 0.0235) which were used in all calculations. The final R1 was 0.0444 (>2sigma(I)) and wR2 was 0.1506 (all data)), which are in good conformity with each other. Normal modes of vibrational frequencies of compounds 1-5 acquired from density-functional theory (DFT) method coincided with the experimental ones. The 1H and 13C chemical shifts of compounds 1-5 have been calculated by GIAO method and the results have been compared with the experimental ones. The first-order hyperpolarizability and their related properties of the novel molecules 1-5 are calculated computationally. The other parameters like natural bond orbital, zero-point vibrational energy, EHOMO, ELUMO, heat capacity and entropy have also been discussed.

Publisher

European Journal of Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3