Synthesis, computational studies, and Hirshfeld surface analysis of 2H-chromen-2-one and imine derivatives

Author:

Odame Felix1ORCID,Madanhire Tatenda2ORCID,Harrison Jerry Joe Ebo Kingsley3ORCID,Boadi Nathaniel Owusu4ORCID,Hosten Eric2ORCID

Affiliation:

1. Department of Basic Sciences, School of Basics and Biomedical Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana

2. Department of Chemistry, Nelson Mandela University, PO Box 77000, Gqeberha 6000, South Africa

3. Department of Chemistry, University of Ghana, PO Box LG 56, Legon, Accra, Ghana

4. Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, University Post Office, Kumasi, Ghana

Abstract

Some 2H-chromen-2-one and imine derivatives have been synthesized through a one-pot condensation of aldehydes, diethyl malonate, and amine compounds. The compounds obtained have been characterized using FTIR, NMR, GC-MS, and elemental analysis. The single-crystal X-ray structure of 3-[piperidine-1-carbonyl]-2H-chromen-2-one (2) has been presented. Compound 2, recrystallized in the monoclinic space C2/c (no. 15), a = 16.654(15) Å, b = 8.789(7) Å, c = 18.460(18) Å, β = 102.89(5)°, V = 2634(4) Å3, Z = 8, T = 296(2) K, μ(MoKα) = 0.091 mm-1, Dcalc = 1.298 g/cm3, 17626 reflections measured (4.528° ≤ 2Θ ≤ 57.446°), 3321 unique (Rint = 0.0313, Rsigma = 0.0257) which were used in all calculations. The final R1 was 0.0441 (I > 2σ(I)) and wR2 was 0.1329 (all data). The experimental bond lengths, bond angles, and other topological properties of compound 2 were compared with the DFT calculated results, the comparison showed good agreement with each other with varying level deviations. The energy levels of HOMO and LUMO, as well as the global chemical reactivity descriptors of representative compound 2, have been presented. A discussion of the Hirshfeld surface analysis of compound 2 has been carried out to provide insight into its structural properties.

Publisher

European Journal of Chemistry

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3