The use of zebrafish to evaluate neuropharmacology of the gold nanoparticles
-
Published:2021-12-31
Issue:4
Volume:12
Page:488-492
-
ISSN:2153-2257
-
Container-title:European Journal of Chemistry
-
language:en
-
Short-container-title:Eur J Chem
Author:
Montes Guilherme Carneiro1ORCID
Affiliation:
1. Department of Pharmacology and Psychobiology, Roberto Alcantara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro, 20551-030, Brazil
Abstract
Zebrafish (Danio rerio) is a vertebrate animal used in animal model research with complex brains and behaviors similar to humans and associate with low coast become a model attractive for the academic community to seek zebrafish for scientific research. Studies on diseases of the central nervous system (CNS) have advanced and news therapeutic agents were developed for treatment these disorders. Reports suggest that the zebrafish model supports the neurodegenerative studies due functional conservation between human genes implicated in neurodegenerative disorders. The discovery of therapeutic compounds for CNS using the zebrafish model allows to show a neuroprotective action or neurotoxicity that might alter the behavioral changes. Neurotoxicity tests might perform in zebrafish’s embryos into 96 multi-well plates, which reduces the amount of substances used and cost. The bioactive compounds able to penetrate the blood-brain barrier (BBB) have important role physicochemical properties that might be desirable pharmacological effects and zebrafish trials allow if the substances might penetrate BBB and to exert central activity. The assays zebrafish are used to analyze nanoparticles that are small molecules used to explore variety applications in human health. Gold nanoparticles (AuNPs) has important properties which are extremely interest for pharmaceutical area such as drug delivery, cellular imaging, diagnostics, and therapeutic agents. Gold nanoparticles enhances Parkinson symptoms and improved neuroinflammation. Some studies show zebrafish might use to evaluate gold nanoparticles for human health hazard and toxicity studies. There is enormous potential for zebrafish in preclinical assays due to predict pharmacological and toxicity effects. Specific guidelines focused on methodologies in the zebrafish are needed to ensure adequate reproducible trials.
Publisher
European Journal of Chemistry
Reference98 articles.
1. [1]. Chakraborty, C.; Sharma, A. R.; Sharma, G.; Lee, S.-S. J. Nanobiotechnology 2016, 14 (1), 65. https://doi.org/10.1186/ s12951-016-0217-6. 2. [2]. Salamanca-Buentello, F.; Persad, D. L.; Court, E. B.; Martin, D. K.; Daar, A. S.; Singer, P. A. PLoS Med. 2005, 2 (5), e97. 3. [3]. Boverhof, D. R.; Bramante, C. M.; Butala, J. H.; Clancy, S. F.; Lafranconi, M.; West, J.; Gordon, S. C. Regul. Toxicol. Pharmacol. 2015, 73 (1), 137-150. 4. [4]. Wolfram, J.; Ferrari, M. Nano Today 2019, 25, 85-98. 5. [5]. Theis, T.; Parr, D.; Binks, P.; Ying, J.; Drexler, K. E.; Schepers, E.; Mullis, K.; Bai, C.; Boland, J. J.; Langer, R.; Dobson, P.; Rao, C. N.; Ferrari, M. Nat. Nanotechnol. 2006, 1 (1), 8-10.
|
|