Fuel oil production from thermal decomposition of the model and waste polystyrene: Comparative kinetics and product distribution

Author:

Ali Ghulam1ORCID,Nisar Jan1ORCID,Arshad Muhammad2ORCID

Affiliation:

1. National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Peshawar, Pakistan

2. Bio/Chem Lab, Government Institute Kacha Mali Khel Dera Ismail Khan, Peshawar 25120, Pakistan

Abstract

The thermal degradation of model polystyrene (MPS) and waste polystyrene (WPS) was performed in a thermobalance system at four heating rates (β) i.e., 5, 10, 15 and 20 °C/min  in an inert atmosphere. The apparent activation energy (Ea) and frequency factor (A) for the MPS and the WPS were calculated using Ozawa-Flynn-Wall (OFW), Kissinger-Akahira-Sunose (KAS), and Augis-Bennetis (AB) methods. It has been determined that Ea and A vary according to fraction conversion, heating rates, and applied models. The activation energy determined for MPS was found to be in the range of 91-106, 90-105, and 114-133 kJ/mol, while, for WPS, Ea was determined in the range of 82-160, 79-159 and 102-202 kJ/mol by applying OFW, KAS, and AB models, respectively. From the results obtained, it was concluded that the Ea determined by all of these methods increases with fraction conversion, indicating that the decomposition of polystyrene follows a complex mechanism of the solid-state reaction. Hence, the kinetic parameters, i.e., Ea and A, seem to play a key role in investigating the mechanism of solid-state reactions and will provide an opportunity to develop the mechanism of the industrial decomposition reactions. The results show that the MPS has a lower activation energy compared to WPS. This high Ea of WPS may be due to the additives used in the manufacturing of different polystyrene products. Pyrolysis GC/MS of WPS indicates that the main components of pyrolysis oil are 1-hydroxy-2-propanone, styrene, α-methyl styrene, toluene, and 1,2-dimethyl benzene. The presence of some oxygenated compounds in the fuel oil of WPS may be due to contamination or additives used during polystyrene processing, as the WPS samples were collected from a garbage dump near a local market. WPS can be utilized as fuel if the fuel oil collected from the pyrolysis of WPS is properly upgraded to make it equivalent to commercial fuel oil.

Publisher

European Journal of Chemistry

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3