Influence of temperature and pH on polyacrylamide-based drilling fluid: Characterization and rheological study

Author:

Koh Jin Kwei1ORCID,Lai Chin Wei1ORCID,Johan Mohd Rafie1ORCID,Gan Sin Seng2ORCID,Chua Wei Wei2ORCID

Affiliation:

1. Nanotechnology and Catalysis Research Centre, Institute for Advanced Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia

2. Synergy Lite Sdn Bhd, No. 31, Jalan PP11/4, Alam Perdana, Industrial Park, Taman Putra Perdana, 47130 Puchong, Selangor, Malaysia

Abstract

Polyacrylamide (PAM) is a biodegradable polymer with good lubricity in friction reduction. However, there is insufficient guidance on the dosage of PAM and poor rheological information on the effects of temperature and pH. This study aimed to investigate the characterization of the material and rheological analysis regarding the effects of concentration, pH, and temperature of PAM. In material characterization, PAM has been shown to offer hydrophilic surfaces. In a rheological study, 1000 ppm PAM was the critical association concentration, as the rheological properties below 1000 ppm PAM were superior. This was due to the dispersion stability effect caused by the polymer concentration. Additionally, a low concentration of polymer contributes to bridging flocculation with an unstable rheological profile and low association networking. When the polymer concentration is further increased to the saturated adsorption level, the rheological profile of PAM above 1000 ppm is significantly affected as a result of the alternation from steric stabilization to depletion flocculation in a polymer system. Furthermore, the rheological performance of PAM was significantly affected by temperature and pH, showing better performance after heating to 60 °C and at pH = 10. Future studies can further develop modified PAM with specific additives at an optimized temperature and pH to investigate the rheological performance of drilling.

Publisher

European Journal of Chemistry

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3