Crystallographic structure, activity prediction, and hydrogen bonding analysis of some CSD-based 3,3'-bis-indole derivatives: A review

Author:

Sharma Varun1ORCID,Brahmachari Goutam2ORCID,Gupta Vivek Kumar1ORCID

Affiliation:

1. Department of Physics, University of Jammu, Jammu Tawi-180006, India

2. Laboratory of Natural Products and Organic Synthesis, Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, West Bengal, India

Abstract

Herein we report crystallographic comparison of some geometrical and structural features for a series of biologically relevant bis-indole derivatives. Selected bond distances and bond angles of interest in a series of bis-indole derivatives have been discussed in detail. The biological activity of the substances has been correlated with based the structure-activity relationships (SAR) base which provides the different possibility of activity (Pa) and possibility of inactivity (Pi). For a better understanding of the packing interactions existing among these derivatives, an overview of crystal structure analysis with emphasis on the intramolecular hydrogen bonding in some bis-indole derivatives is presented. The role of hydrogen bonding in the crystal structure assembly of bis-indole derivatives has been found to be predominant and this observation reveals significant impact of hydrogen bonding in high value of drug-likeness of these bio-molecules.

Publisher

European Journal of Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3