Author:
Grebennikov A.V., ,Khanchuk A.I.,
Abstract
Transform margins represent lithospheric plate boundaries with horizontal sliding of oceanic plate, which in time and space replaced the subduction related convergent margins. This happened due to: spreading ridge–trench intersection (California; Queen Charlotte–Northern Cordilleran, West of the Antarctic Peninsula, and probably the Late Miocene–Pleistocene Southernmost South America) or ridge death along continental margin (Baja California); change in the direction of oceanic plate movement (Western Aleutian–Komandorsk; Southernmost tip of the Andes); and island arc-continent collision (New Guinea Island). Post-subduction magmatism is related to a slab window that resulted either from the spreading ridge collision (subduction) with a continental margin or slab tear formation, or slab break-off after subduction cessation due to other reasons. Igneous magmatic series formed in consequence of these events show diversity of tholeiitic (sub-alkaline), alkaline or calc-alkaline, high-alumina and adakitic rocks. The comprehensive geochemical dataset (more than 2400 analyses) on igneous rocks of the model transform and convergent geodynamic settings allowed to substantiate the most informative triple diagrams for the petrogenic oxides TiO2 × 10 – Fe2O3Tot – MgO and trace elements Nb – La– Yb. Mostly approved for the rock compositions with SiO2 < 63 wt. %, the new plots are capable of distinguishing igneous rocks formed above zones of subduction at an island arc and continental margin (related to convergent margins), from those formed in the tectonic setting of transform margins along continents or island arcs.
Publisher
Yu. A. Kosygin Institute of Tectonics and Geophysics, Far Eastern Branch, RAS
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献