Author:
Jayaseelan Revathy,Pandulu Gajalskshmi,G Ashwini
Abstract
This paper presents the prediction of fresh concrete properties and compressive strength of flowable concrete through neural network approach. A comprehensive data set was generated from the experiments performed in the laboratory under standard conditions. The flowable concrete was made with two different types of micro particles and with single nano particles. The input parameter was chosen for the neural network model as cement, fine aggregate, coarse aggregate, superplasticizer, water-cement ratio, micro aluminium oxide particles, micro titanium oxide particles, and nano silica. The output parameter includes the slump Flow, L-Box flow, V Funnel flow and compressive strength of the flowable concrete. To develop a suitable neural network model, several training algorithms were used such as BFGS Quasi- Newton back propagation, Fletcher-Powell conjugate gradient back propagation, Polak - Ribiere conjugate gradient back propagation, Gradient descent with adaptive linear back propagation and Levenberg-Marquardt back propagation. It was found that BFGS Quasi- Newton back propagation and Levenberg-Marquardt back propagation algorithm provides more than 90% on the prediction accuracy. Hence, the model performance was agreeable for prediction purposes for the fresh properties and compressive strength of flowable concrete.
Publisher
Journal of Urban and Environmental Engineering
Subject
Urban Studies,Environmental Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献