Komparasi Metode Decision Tree dan Deep Learning dalam Meramalkan Jumlah Mahasiswa Drop Out Berdasarkan Nilai Akademik

Author:

Puteri Dina Wahyuni,Buana Putu Wira,Sukarsa I Made

Abstract

Akreditasi memiliki peran penting dalam proses pertimbangan setiap calon mahasiswa untuk melanjutkan pendidikan ke jenjang yang lebih tinggi. Perguruan tinggi dan program studi tentu diharapkan dapat memiliki akreditasi yang baik, guna menjamin mutu dan kualitasnya. Drop out menjadi salah satu permasalahan dalam menjaga dan meningkatkan mutu suatu perguruan tinggi khususnya pada program studi. Angka kasus drop out yang tinggi akan memicu turunnya kualitas Pendidikan di Indonesia dan berdampak pada akreditasi suatu program studi di perguruan tinggi. Upaya yang dapat dilakukan untuk mengatasi hal tersebut yaitu, dengan melakukan prediksi terkait mahasiswa yang terancam drop out secara dini. Penelitian ini menggunakan dua jenis metode yang berbeda yang dikomparasikan untuk menemukan hasil pemodelan terbaik. Metode yang digunakan yakni decision tree dengan algoritma C5.0 serta deep learning dengan algoritma GRU. Data peramalan yang digunakan yaitu Data Mahasiswa Program Studi Teknologi Informasi angkatan tahun 2010-2016. Metode dengan performa terbaik pada penelitian ini yaitu metode decision tree C5.0 yang menghasilkan nilai akurasi sebesar 95% dengan persentase kesalahan RMSE 0.13001950438859716 dan MAPE 2.26% Metode deep learning menunjukkan hasil yang cenderung lebih rendah dibanding decision tree C5.0 dengan nilai akurasi sebesar 92% dan persentase kesalahan RMSE 0.1873780487675864 MAPE 4.69%.

Publisher

Indonesian Journal Publisher

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3