Sintesis dan Karakterisasi Nanosilika dari Limbah Silica Scaling PLTP Dieng Melalui Metode Alkali Fusion NaOH

Author:

Waziz Wildan,Riko Aulia Rachman,Fajar Fitriani

Abstract

Silica scaling is the main problem that arises in the operation of geothermal power plants (PLTP) in Dieng. Silica scaling can disrupt electricity production and cause a buildup of waste in the environment. Silica scaling has a high silica (SiO2) content so it has the potential to be used as a value-added material, namely nanosilica. One method to obtain nanosilica is alkali fusion. This research aims to obtain nanosilica from silica scaling waste from PLTP Dieng using the alkali fusion method as well as knowing the characteristics of the nanosilica produced. The alkali fusion process is carried out using NaOH as an alkali source. Then mixing silica scaling powder and NaOH at varying temperatures of 600°C, 650°C and 700°C to produce nanosilica. The resulting nanosilica was then characterized to confirm the success of the synthesis process in producing nanosilica particles. The characterization carried out included x-ray diffraction (XRD) to characterize crystallinity, Fourier transform infrared (FTIR) to characterize functional groups, transmission electron microscope (TEM) and particle size analyzer (PSA) to determine particle size. The results of this research showed that amorphous nanosilica was successfully synthesized from silica scaling using the NaOH alkali fusion method. It was found from the results of TEM and PSA characterization that the smallest particle size was produced at a fusion temperature of 650°C. Furthermore, FTIR data also confirms the existence of functional groups at wave numbers identical to silica.

Publisher

Indonesian Journal Publisher

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3