Advanced Carbon Electrocatalysts for Selective Oxygen Reduction into Hydrogen Peroxide: Understandings of Active Sites

Author:

Su Jiaxin,Xiao Bingbing,Wang Jun,Zhu Xiaofeng

Abstract

Review Advanced Carbon Electrocatalysts for Selective Oxygen Reduction into Hydrogen Peroxide: Understandings of Active Sites Jiaxin Su 1,2, Bingbing Xiao 1,2, Jun Wang 1,2,* and Xiaofeng Zhu 1,2,* 1 State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China 2 Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China * Correspondence: junwang091@163.com (J.W.); xfzhu@swust.edu.cn (X.Z.) Received: 17 January 2024; Revised: 25 January 2024; Accepted: 19 February 2024; Published: 5 March 2024   Abstract: Electrochemical conversion of oxygen-to-hydrogen peroxide (H2O2) through oxygen reduction (ORR) is becoming a green and effective solution to replacing conventional anthraquinone industry. Advanced carbon is currently one of the most promising catalysts for H2O2 electrosynthesis by a selective two-electron ORR (2e-ORR), owing to its chemical and catalytic merits. To realize better performance of 2e-ORR over advanced carbons, extensive efforts is devoted to constructing highly efficient carbon-based active sites, which requests in-depth understanding of their underlying catalytic roles. Here, an informative and critical review of recent investigations on active sites on advanced carbons for 2e-ORR is provided. Together with our recent findings, the review first highlights the promoting progress on heteroatom-doped carbons, and their direct/indirect contributions for 2e-ORR has been emphasized. Simultaneously, defect engineering of carbon scaffold is briefly demonstrated as a practical strategy for achieving outstanding H2O2 production. Meanwhile, the review also offers analysis on striking influence of surface modification for carbon active site. Finally, challenges and perspectives of the advanced carbon catalysts for 2e-ORR are outlined. Such reviewed fundamentals of active sites in this emerging field would shed light to future impactful progress in ORR and broader research of energy and catalysis.

Publisher

Australia Academic Press Pty Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3