Real-Time Traffic Flow Statistics Based on Dual-Granularity Classification

Author:

Bi Yanchao,Yin Yuyan,Liu Xinfeng,Nie Xiushan,Zou Chenxi,Du Junbiao

Abstract

Article Real-Time Traffic Flow Statistics Based on Dual-Granularity Classification Yanchao Bi, Yuyan Yin, Xinfeng Liu *, Xiushan Nie, Chenxi Zou, and Junbiao Du 1 School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China * Correspondence: liuxinfeng18@sdjzu.edu.cn     Received: 17 June 2023 Accepted: 13 September 2023 Published: 26 September 2023   Abstract: Traffic detection devices can cause accuracy degradation over time. Considering problems such as time-consuming and laborious manual statistics, high misdetection probabilities, and model tracking failures, there is an urgent need to develop a deep learning model (which can stably achieve detection accuracy over 90%) to evaluate whether the device accuracy still satisfies the requirements or not. In this study, based on dual-granularity classification, a real-time traffic flow statistics method is proposed to address the above problems. The method is divided into two stages. The first stage uses YOLOv5 to acquire all the motorized and non-motorized vehicles appearing in the scene. The second stage uses EfficientNet to acquire the motorized vehicles obtained in the previous stage and classify such vehicles into six categories. Through this dual-granularity classification, the considered problem is simplified and the probability of false detection is reduced significantly. To correlate the front and back frames of the video, vehicle tracking is implemented using DeepSORT, and vehicle re-identification is implemented in conjunction with the ResNet50 model to improve the tracking accuracy. The experimental results show that the method used in this study solves the problems of misdetection and tracking effectively. Moreover, the proposed method achieves 98.7% real-time statistical accuracy by combining the two-lane counting method.

Publisher

Australia Academic Press Pty Ltd

Reference21 articles.

1. Tan, M.X.; Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, 9–15 June 2019; ICML: Honolulu, 2019; pp. 6105–6114.

2. Simple online and realtime tracking with a deep association metric

3. Deep Residual Learning for Image Recognition

4. Li, Y.S.; Ma, R.G.; Zhang, M.Y. Traffic monitoring video vehicle volume statistics method based on improved YOLOv5s+DeepSORT. Comput. Eng. Appl., 2022, 58: 271−279.

5. Jin, L.S.; Hua, Q.; Guo, B.C.; et al. Multi-target tracking of vehicles based on optimized DeepSort. J. Zhejiang Univ. (Eng. Ed.) 2021, 55, 1056–1064. doi:10.3785/j.issn.1008.973X.2021.06.005

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Finite-Horizon Security-Guaranteed Non-Fragile H Estimation Under Integral Measurements;2024 3rd Conference on Fully Actuated System Theory and Applications (FASTA);2024-05-10

2. Open-Circuit Fault Diagnosis for the Inverter of Inductive Power Transfer Systems: A Rough-Set-Theory-Based Method;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3