Metal Surface Defect Detection Based on Metal-YOLOX

Author:

Yue Xiaoli,Chen Jiandong,Zhong Guoqiang

Abstract

Article Metal Surface Defect Detection Based on Metal-YOLOX Xiaoli Yue , Jiandong Chen , and Guoqiang Zhong * 1 College of Computer Science and Technology, Ocean University of China, Qingdao 266000, China * Correspondence: gqzhong@ouc.edu.cn     Received: 14 June 2023 Accepted: 13 September 2023 Published: 21 December 2023   Abstract: Due to the limitations of manufacture technologies, working environments and other conditions, metals (such as steel and aluminum) are susceptible to surface defects during the production process. Therefore, defect detection is an indispensable part of metal manufacturing. This paper innovatively proposes a one-stage defect detection model named Metal-YOLOX. Metal-YOLOX addresses the limitations in existing models posed by large variances in defect features and inadequate balance between detection accuracy and efficiency. Firstly, the composite convolution module of Metal-YOLOX integrates texture, dilated and deformable convolutions to filter out irrelevant features and extract effective feature information. Secondly, the feature cross-fusion module (HCNet) alleviates the problem of large dimensional differences in defects. HCNet uses skip connections to establish the connection between the original multi-scale features and the output nodes, and reduces the addition of redundant information. Thirdly, Metal-YOLOX adopts the deep separable convolution and global channel reduction. This lightweight design helps reduce computational complexity. Finally, detailed experiments demonstrate that, in terms of mean average precision, Metal-YOLOX achieves 79.83, 69.14, and 81.22 on the NEU-DET, GC-10 and Aluminum datasets, respectively. Furthermore, Metal-YOLOX dramatically reduces parameter number and computational complexity. The experiments validate that the Metal-YOLOX model improves the detection performance, maintains the detection speed, and meets the real-time requirements.

Publisher

Australia Academic Press Pty Ltd

Reference36 articles.

1. Fast Fourier Transform and Convolution Algorithms

2. Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling

3. Defect Detection of Particleboards by Visual Analysis and Machine Learning

4. Li, J.H.; Quan, X.X.; Wang, Y.L. Research on defect detection algorithm of ceramic tile surface with multi-feature fusion. Comput. Eng. Appl., 2020, 56: 191−198. doi: 10.3778/j.issn.1002-8331.1907-0130

5. Shape Discrimination Using Fourier Descriptors

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vision Control for Cable Binding Robot in Offshore and Marine Industry;2024 IEEE Conference on Artificial Intelligence (CAI);2024-06-25

2. Class Imbalance Wafer Defect Pattern Recognition Based on Shared-Database Decentralized Federated Learning Framework;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3