Computational Analysis of Printed Arabic Text Database for Natural Language Processing

Author:

Bouressace HassinaORCID

Abstract

A frequency dictionary of printed Arabic text is essential for natural language processing. It includes 1,251 XML files of Arabic documents collected from ten newspapers and magazines from different countries and created as the PATD database. A total of 2,344 articles were created with various structures: open vocabulary, multi-font, multi-size, and multi-style text. From these articles, 1,102,078 tokens, 19,926 sentences, and 1,000,000 words were extracted. This dictionary provides detailed information for each word, including English equivalents, usage statistics, usage distribution, and the most widely used terms. A thematic vocabulary list of the top words on various topics is also provided. This frequency dictionary is a useful resource of modern Arabic vocabulary for various specialists, students, and learners. The frequency dictionary is freely available to interested researchers on the webpage.

Publisher

Institute of Slavic Studies Polish Academy of Sciences

Reference25 articles.

1. Abdelali, A. (2003). Localization in modern standard Arabic. Journal of the American Society for Information Science and Technology, 55(1), 23–28. https://doi.org/10.1002/asi.10340

2. Abdelali, A., Cowie, J., & Soliman, H. S. (2005). Building a modern standard Arabic corpus: Paper presented at the Computational Modeling of Lexical Acquisition Workshop, Croatia, 25th to 28th of July. https://www.researchgate.net/publication/228958341_Building_a_modern_standard_Arabic_corpus

3. Abdul Razak, Z. R. (2011). Modern media Arabic: A study of word frequency in world affairs and sports sections in Arabic newspapers [Doctoral dissertation, University of Birmingham]. https://etheses.bham.ac.uk/id/eprint/2882/

4. Abuleil, S., & Evans, M. (2002). Extracting an Arabic lexicon from Arabic newspaper text. Journal of Computer and the Humanities, 36({2), 191–221. https://doi.org/10.1023/A:1014368121689

5. Adham, M. A. A., al-Angelo, A. M., Agresti, A. N. D., & Finlay, B. (2009). Statistical methods for the social sciences (4th ed.). Pearson Education.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3