What Can We Learn from First Principles Multi-Scale Models in Catalysis? The Role of the Ni/Al2O3 Interface in Water-Gas Shift and Dry Reforming as a Case Study

Author:

Foppa Lucas,Larmier Kim,Comas-Vives Aleix

Abstract

Computational first principles models based on density functional theory (DFT) have emerged as an important tool to address reaction mechanisms and active sites in metal nanoparticle catalysis. However, the common evaluation of potential energy surfaces for selected reaction steps contrasts with the complexity of reaction networks under operating conditions, where the interplay of adsorbate populations and competing routes at reaction conditions determine the most relevant states for catalyst activity and selectivity. Here, we discuss how the use of a multi-scale first principles approach combining DFT calculations at the atomistic level with kinetic models may be used to understand reactions catalyzed by metal nanoparticles. The potential of such an approach is illustrated for the case of Al2O3-supported Ni nanoparticle catalysts in the water-gas shift and dry reforming reactions. In these systems, both Ni nanoparticle (metal) as well as metal/oxide interface sites are available and may play a role in catalysis, which depends not only on the energy for critical reaction steps, as captured by DFT, but also on the reaction temperature and adsorbate populations, as shown by microkinetic modelling and experiments.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3