Author:
Christensen Anders S.,Von Lilienfeld O. Anatole
Abstract
The identification and use of structure–property relationships lies at the heart of the chemical sciences. Quantum mechanics forms the basis for the unbiased virtual exploration of chemical compound space (CCS), imposing substantial compute needs if chemical accuracy is to be
reached. In order to accelerate predictions of quantum properties without compromising accuracy, our lab has been developing quantum machine learning (QML) based models which can be applied throughout CCS. Here, we briefly explain, review, and discuss the recently introduced operator formalism
which substantially improves the data efficiency for QML models of common response properties.
Subject
General Medicine,General Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献