Author:
Pascazio Roberta,Zito Juliette,Infante Ivan
Abstract
In the last two decades, colloidal semiconductor nanocrystals have emerged as a phenomenal research topic due to their size-dependent optoelectronic properties and to their outstanding versatility in many technological applications. In this review, we provide an historical account of
the most relevant computational works that have been carried out to understand atomistically the electronic structure of these materials, including the main requirements needed for the preparation of nanocrystal models that align well with the experiments. We further discuss how the advancement
of these computational tools has affected the analysis of these nanomaterials over the years. We focus our review on the three main families of colloidal semiconductor nanocrystals: group II-VI and IV-VI metal chalcogenides, group III-V metal pnictogenides and metal halides, in particular
lead-based halide perovskites. We discuss the most recent research frontiers and outline the future outlooks expected in this field from a computational perspective.
Subject
General Medicine,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献