On the Ability of Nickel Complexes Derived from Tripodal Aminopyridine Ligands to Catalyze Arene Hydroxylations

Author:

Masferrer-Rius Eduard,Hopman Raoul M.,Van der Kleij Jishai,Lutz Martin,Klein Gebbink Robertus J. M.

Abstract

The development of catalysts for the selective hydroxylation of aromatic C–H bonds is an essential challenge in current chemical research. The accomplishment of this goal requires the discovery of powerful metal-based oxidizing species capable of hydroxylating inert aromatic bonds in a selective manner, avoiding the generation of non-selective oxygen-centered radicals. Herein we show an investigation on the ability of nickel(ii) complexes supported by tripodal tetradentate aminopyridine ligands to catalyze the direct hydroxylation of benzene to phenol with H2O2 as oxidant. We have found that modifications on the ligand structure of the nickel complex do not translate into different reactivity, which differs from previous findings for nickel-based arene hydroxylations. Besides, several nickel(ii) salts have been found to be effective in the oxidation of aromatic C–H bonds. The use of fluorinated alcohols as solvent has been found to result in an increase in phenol yield; however, showing no more than two turn-overs per nickel. These findings raise questions on the nature of the oxidizing species responsible for the arene hydroxylation reaction.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3