Synthetic Calcium Phosphate Ceramics for Treatment of Bone Fractures

Author:

Döbelin Nicola,Luginbühl Reto,Bohner Marc

Abstract

Bone is a complex natural material with outstanding mechanical properties and remarkable self-healing capabilities. The mechanical strength is achieved by a complex structure of a mineral part comprising apatitic calcium phosphate crystals embedded in an organic matrix. Bone also contains several types of cells constantly replacing mature bone with new bone. These cells are able to seal fractures and fill gaps with new bone in case of structural damage. However, if a defect exceeds a critical size, surgery is necessary to fill the void with a spacer in order to prevent soft tissue from growing into the defect and delaying the healing process. The spacers, also known as bone grafts, can either be made of fresh bone from the patient, of processed bone from donor organisms, or of synthetic materials chemically similar to the mineral part of bone. Synthetic bone void fillers are also known as bone graft substitutes. This review aims at explaining the biological and chemical background that lead to the development of synthetic bone graft substitutes and gives an overview of the current state of development. It also highlights the multidisciplinary nature of biomaterials research, which combines cell biology and medicine with chemistry, mineralogy, crystallography, and mechanical engineering.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3