Author:
Pham Duc T.,Keller Hubert,Breuer Stephan,Huemann Sascha,Hai Nguyen T.N.,Zoerlein Caroline,Wandelt Klaus,Broekmann Peter
Abstract
Charged organic adsorbates play an important role in a number of electrochemical reactions, e.g. as additives for metal plating relevant for device fabrication in the semiconductor industry. Fundamental investigations are mandatory in order to acquire profound knowledge of the
structural and electronic properties of these layers parallel and perpendicular to the surface, and to finally achieve a deeper mechanistic understanding of the kinetics of involved charge transfer reactions taking place at these complex metal/organic/electrolyte interfaces. A key structural
motif of these interfaces consists in 'paired' (inorganic)anion/(organic)cation layers that can have an enormous stability even during an ongoing charge transfer reaction. In this contribution we present and discuss a selected case study on the co-adsorption of halide anions and cationic
organic molecules that exhibit a pronounced redox activity. It will be demonstrated that their phase behavior at the interface crucially depends on both their particular redox-state and the surface concentration of the halide counter ions. The subtle balance between adsorbate–adsorbate
and adsorbate–substrate interaction of the poly-cationic organic layer can be carefully controlled by potential dependent anion adsorption and desorption processes through the organic layer. This process can be followed by in situ high-resolution scanning tunnelling microscopy,
while additional information about the structural and chemical state of the respective phase is obtained from in situ X-ray diffraction and ex situ photoelectron spectroscopy.
Subject
General Medicine,General Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献