Abstract
Despite the important growth of ab initio and computational techniques, ligand field theory in molecular science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy levels arising from systems with open shells d and/or f electrons.
Over the past decade we have developed a ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound, especially if treated by
Density Functional Theory calculation, allows the determination of the electronic structure and properties with a surprising good accuracy. In ligand field theory, the theoretical concepts consider only a single atom center; and treat its interaction with the chemical environment essentially
as a perturbation. Therefore success in the simple ligand field theory is no longer questionable, while the more accurate molecular orbital theory does in general over-estimate the metal–ligand covalence, thus yields wave functions that are too delocalized. Although LF theory has always
been popular as a semi-empirical method when dealing with molecules of high symmetry e.g. cubic symmetry where the number of parameters needed is reasonably small (3 or 5), this is no more the case for molecules without symmetry and involving both an open d- and f-shell (# parameters ?90).
However, the combination of LF theory and Density Functional (DF) theory that we introduced twenty years ago can easily deal with complex molecules of any symmetry with two and more open shells. The accuracy of these predictions from 1st principles achieves quite a high accuracy
(
Subject
General Medicine,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献