Pyridyloxy Cyclophosphazenes and Carbophosphazenes: Inorganic Ring-Supported Coordination Platforms

Author:

Chandrasekhar Vadapalli,Narayanan Ramakirushnan Suriya

Abstract

This review deals with the utility of cyclophosphazenes and carbophosphazenes as supports for the construction of multi-site coordination platforms. The rich nucleophilic substitution chemistry of the chlorocyclophosphazenes and the analogous carbocyclophosphazenes can be utilized to replace chlorine atoms from these inorganic rings with coordinating side arms. This leads to the assembly of interesting compounds that have the capability to bind to multiple transition metal ions. Using this strategy several coordination ligands have been constructed. After a brief introduction to such ligands, this review deals with pyridyloxy cyclophosphazenes and carbophosphazenes. These ligands, in addition to possessing multiple coordinating arms, are also considered to be structurally flexible systems. This is because the pyridyl substituents are connected to the inorganic ring skeleton through flexible oxygen spacer atoms. The coordination chemistry of these pyridyloxy systems is discussed particularly in light of the work that has emanated from our laboratories in India.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3