Ionic Space Charge Driven Organic Photovoltaic Devices

Author:

Benmansour Hadjar,Castro Fernando A.,Nagel Matthias,Heier Jakob,Hany Roland,Nüesch Frank

Abstract

Most all-organic solar cells rely on undoped electron donor–acceptor heterojunctions. Power-conversion efficiencies depend critically on the photoinduced charge generation at these interfaces such as the charge transport through the layers and collection at the electrodes. Hence, the ability to regulate and control these processes would offer advanced device functionality. Mobile ions are able to create internal electric fields similar to conventional, electronic p-n junctions without having the inconvenience of doping, which often leads to carrier recombination and excited state quenching. We demonstrate that at organic heterointerfaces these ionic junctions can shift the electronic orbital energy level, which allows the direction of electron transfer processes to be controlled. Cationic cyanine dyes offer a convenient model system to study the effect of mobile ions systematically. In conjunction with usually strong electron acceptors such as the Buckminsterfullerene C60, and donors such as the poly(p-phenylenevinylene) derivative MEH-PPV, we fabricated bilayer photovoltaic devices to reveal exciting effects due to ionic interfacial space charge. For example, we show that C60 can be turned into an electron donor. Furthermore, oxidative or reductive electron transfer processes can simply be switched on and off with an applied bias, thereby drastically altering device performance and spectral sensitivity.

Publisher

Swiss Chemical Society

Subject

General Medicine,General Chemistry

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3