Author:
Simm Gregor N.,Proppe Jonny,Reiher Markus
Abstract
Computational models in chemistry rely on a number of approximations. The effect of such approximations on observables derived from them is often unpredictable. Therefore, it is challenging to quantify the uncertainty of a computational result, which, however, is necessary to assess
the suitability of a computational model. Common performance statistics such as the mean absolute error are prone to failure as they do not distinguish the explainable (systematic) part of the errors from their unexplainable (random) part. In this paper, we discuss problems and solutions for
performance assessment of computational models based on several examples from the quantum chemistry literature. For this purpose, we elucidate the different sources of uncertainty, the elimination of systematic errors, and the combination of individual uncertainty components to the uncertainty of a prediction.
Subject
General Medicine,General Chemistry
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献