Abstract
Colloidal semiconductor nanocrystals display remarkably bright, strongly size-dependent photoluminescence properties. Following photoexcitation of these materials, temporary charge carrier separation can occur where one or both charge carriers are trapped. Charge detrapping can reform
the emissive state on long time scales up to seconds, causing delayed luminescence. This delayed luminescence has not yet been thoroughly explored, and appears to be closely associated with a phenomenon observed at the single particle level, i.e. photoluminescence intermittency (blinking).
Here, some of our recent work on the delayed luminescence properties of nanocrystals of different chemical composition is reviewed. These results provide insight into the mechanism of carrier detrapping, and are discussed in the context of photoluminescence blinking.
Subject
General Medicine,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantum Dots CdSe/ZnS as a Source Array of Entangled States;Quantum Dots - Fundamental and Applications;2020-06-24
2. Photoluminescence;Optical Properties of Materials and Their Applications;2019-11-15